An Anchor-Free Siamese Network with Multi-Template Update for Object Tracking

نویسندگان

چکیده

Siamese trackers are widely used in various fields for their advantages of balancing speed and accuracy. Compared with the anchor-based method, anchor-free-based approach can reach faster speeds without any drop precision. Inspired by network anchor-free idea, an (AFSN) multi-template updates object tracking is proposed. To improve performance, a dual-fusion method adopted which multi-layer features multiple prediction results combined respectively. The low-level feature maps concatenated high-level to make full use both spatial semantic information. as stable possible, final obtained combining results. Aiming at template update, high-confidence update mechanism used. average peak correlation energy determine whether should be updated. We implement per-pixel manner, computes category bounding boxes directly. Experimental indicate that overlap success rate proposed algorithm increase about 5% 10%, respectively, compared SiamRPN++ when running on dataset GOT-10k (Generic Object Tracking Benchmark).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Similarity Mapping with Enhanced Siamese Network for Multi-Object Tracking

Multi-object tracking has recently become an important area of computer vision, especially for Advanced Driver Assistance Systems (ADAS). Despite growing attention, achieving high performance tracking is still challenging, with state-of-theart systems resulting in high complexity with a large number of hyper parameters. In this paper, we focus on reducing overall system complexity and the numbe...

متن کامل

Convolutional Gating Network for Object Tracking

Object tracking through multiple cameras is a popular research topic in security and surveillance systems especially when human objects are the target. However, occlusion is one of the challenging problems for the tracking process. This paper proposes a multiple-camera-based cooperative tracking method to overcome the occlusion problem.  The paper presents a new model for combining convolutiona...

متن کامل

Hierarchical Siamese Network for Thermal Infrared Object Tracking

Most thermal infrared (TIR) tracking methods are discriminative, which treat the tracking problem as a classification task. However, the objective of the classifier (label prediction) is not coupled to the objective of the tracker (location estimation). The classification task focuses on the between-class difference of the arbitrary objects, while the tracking task mainly deals with the within-...

متن کامل

A Twofold Siamese Network for Real-Time Object Tracking

Observing that Semantic features learned in an image classification task and Appearance features learned in a similarity matching task complement each other, we build a twofold Siamese network, named SA-Siam, for real-time object tracking. SA-Siam is composed of a semantic branch and an appearance branch. Each branch is a similaritylearning Siamese network. An important design choice in SA-Siam...

متن کامل

Fully-Convolutional Siamese Networks for Object Tracking

The problem of arbitrary object tracking has traditionally been tackled by learning a model of the object’s appearance exclusively online, using as sole training data the video itself. Despite the success of these methods, their online-only approach inherently limits the richness of the model they can learn. Recently, several attempts have been made to exploit the expressive power of deep convo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronics

سال: 2021

ISSN: ['2079-9292']

DOI: https://doi.org/10.3390/electronics10091067